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Abstract

This paper presents the sensitivities of a repeated singular value of a matrix with respect to perturbations
in that matrix[ The di.culty in computing the sensitivities of a repeated singular value is linked to the fact
that the multiplicity of the singular value may change during the perturbation[ The derivative is developed
based on an approach used for repeated eigenvalues of self adjoint systems\ by constraining the singular
values to remain bundled during the perturbation[ The need for the sensitivities of singular values arose
when optimizing the geometry of precision structures under a family of disturbances characterized by a
disturbance in~uence matrix[ The aim was to modify the geometry of the structure in a way which enhances
its performance[ Since the structure is subjected to a multitude of loading cases the objective is to minimize
the worst possible distortion[ It is shown that this is equivalent to minimizing the _rst singular value of the
disturbance in~uence matrix[ Consequently\ in the mathematical programming formulation the objective
function is the _rst singular value under the constraints inherent to the method for computing the sensitivities[
This is then solved by a Lagrangian method[ It is shown that the technique is very reliable as visualized in
two typical truss examples[ Þ 0888 Elsevier Science Ltd[ All rights reserved[

0[ Introduction

Precision structures support devices requiring a high degree of accuracy such as large antennas
or telescope mirrors[ The purpose of the supporting part of the structure is to maintain small
distortions under a family of external disturbances[ In this paper the precision structures are elastic
trusses and the distortions are the displacements at some of the nodes[ The degrees of freedom
whose displacements have to be kept to a minimum are called the controlled degrees of freedom
"CDOF#[ The disturbance is represented by an in~uence matrix\ D\ where a column\ i of D is the
distortion obtained by applying a unit disturbance at the ith disturbance source[ The task is to
design the geometry of a truss such as to maintain the CDOF as undeformed as possible under all

� Corresponding author[



S[ Hakim\ M[B[ Fuchs:International Journal of Solids and Structures 25 "0888# 1106Ð11291107

combinations of disturbances[ Since the structure is subjected to many loading conditions the
objective function was selected as the worst possible distortion under any combination of dis!
turbances[ It is shown that this is equivalent to minimize the _rst singular value of the disturbance
in~uence matrix "Hakim and Fuchs\ 0885#[ Minimizing the singular value with respect to nodal
coordinates lead to the need for determining the sensitivities of a singular value when the matrix
is a function of a set of variable parameters[

The central topic of this paper is the computation of the gradient of a singular value of a matrix
and in particular in the case of repeated singular values[ Note\ the matrix need not be square[ The
derivation of the gradient of distinct singular values is straightforward "Junkins and Kim\ 0889#[
In the repeated singular value case it is developed following the method of Masur "0873\ 0874# for
the derivative of repeated eigenvalues of self adjoint systems[

The optimization procedure\ adapted from Czyz and Lukasiewicz "0884#\ where it is used for
eigenvalues of symmetric matrices\ is based on a constrained optimization with a Lagrange
multipliers matrix[ The expected maximum multiplicity of the singular value is determined in
advance and updated iteratively[ During the optimization the algorithm checks whether repeated
singular values occurred in order to determine the next step in the design space[ The algorithm
stops when there is no further improvement[

The sensitivities of the singular value depends on the derivative of the disturbance in~uence
matrix with respect to geometry variations\ 1D:1xi\ where xi is the coordinate of one of the nodes[
The disturbance in~uence matrix\ D\ is in fact the response of part of the structure to external
excitation[ Therefore the derivative we seek is that of a subset of the displacement vector under
speci_ed loadings\ with respect to geometrical variations[ For truss structures that derivative may
be obtained analytically\ using standard sensitivity analysis\ as in Adelman and Haftka "0875#\
combined with an adaptation of the methods used for large displacements\ Levy and Spillers
"0884#[ The 1!D case will be presented herein[ A column of D is the displacement at the CDOF
due to one of the disturbance sources\ hence\ the derivative of that displacement will be the
appropriate column of 1D:1xi[

The optimization algorithm was implemented in Matlab "Moler et al[\ 0876# and tested on a
two hinged bridge for two cases[ In the _rst case we had a distinct singular value\ whereas in the
second\ a repeated singular value occurred[ The numerical implementation proved to be very
reliable[ In the second example the proposed optimization algorithm detected the repeated singular
values in due time and reduced them simultaneously without di.culty[ A counterexample emphas!
ized the kind of di.culties one can expect when ignoring the multiplicity of the singular values[
From a conceptual viewpoint\ the results show that signi_cant improvements are achieved by using
optimal geometries[

In the next section we formulate the problem for designing optimal precision structures under a
family of disturbances[ Using the nodal coordinates as design variables one seeks to minimize the
_rst singular value of the disturbance in~uence matrix while keeping the volume of material
constant[ In Section 2 we develop the sensitivity relations of a singular value of a matrix with
respect to parameters a}ecting the matrix[ It is shown that in the general case of a repeated singular
value there exists an implicit relation between a variation of the parameter and a variation of the
singular value[ We point out in the following section that by constraining the parameters to a
subspace which maintains the equality between the singular values of the multiplicity group\
explicit sensitivities "derivatives# can be computed[ Consequently the minimization formulation in
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Section 1 is augmented by equality equations constraining the parameter space to maintain the
multiplicity of the singular value[ It is indicated that the constrained problem is solved by a
Langrangian multipliers method[ Section 4 deals with computing the sensitivities of a singular
value in the particular case of a disturbance in~uence matrix with respect to nodal coordinates[
Numerical examples are presented in Section 5 and the paper terminates with conclusions in
Section 6[

1[ Designing precision structures

The need for shape precision arises when the structure has to support devices requiring a high
degree of accuracy\ such as antenna or multi!lens telescopes[ Consider for instance the bridge in
Fig[ 0\ having 39 DOF and 40 axial elements[ Assume that the precision requirements are on the
lateral displacements of the lower chord[ These nine displacements are the CDOF[ Due to some
external agent the truss will experience nonzero displacements\ in particular at these CDOF[ The
design aim is to reduce the magnitude of the displacements at the CDOF[ In the following we will
term the external agents which a}ect the structure disturbances\ and the resulting displacements
at the CDOF distortions[ Examples of disturbances are temperature gradients\ element size errors\
moving loads and so forth[

In this work we deal with passive control\ as opposed to active control where sensors and
actuators are embedded in the structure "Hakim and Fuchs\ 0885#[ Passive design relies on the
structure itself for reducing the distortion[ We will assume that there are Nd disturbance sources
and Np CDOF[ These distortions can be represented by

vd � Dd "0#

where vd is the Np displacements at the CDOF due to the disturbance\ D is the Np×Nd disturbance
in~uence matrix and d is a disturbance vector of size Nd[ Matrix D is assumed to be known ^
however\ the disturbances d are arbitrary[ Note that vd is the displacements of the CDOF and not
of all the nodes[ For precision control it is customary to minimize the RMS "Root Mean Square#
of the distortion\ that is to minimize vT

d vd[ This demand can be formulated as a performance
measure

J 0 vT
d vd � dTDTDd "1#

The value of J can be obtained for every disturbance[ Our interest lies in the largest possible value
of J\ denoted J�[ This is the worst case error\ no other disturbance will yield larger RMS of the
distortion[

Fig[ 0[ Bridge truss with lower!chord CDOF[



S[ Hakim\ M[B[ Fuchs:International Journal of Solids and Structures 25 "0888# 1106Ð11291119

To compute J� we assume that the disturbance space D is such that the disturbances are limited
by a hypersphere constraint

dTd−0 � 9 "2#

where the radius is unitary without loss of generality[ A di}erent radius can be accommodated by
a scaling of D[ The next step is to perform a Singular Value Decomposition "SVD# of D "Golub
and Van Loan\ 0878#

USdVT � D "3#

where Sd is an Np×Nd quasi!diagonal matrix having si\ the singular values of D\ in descending
order on the main diagonal\ and U"Np×Np#\ V"Nd×Nd# are orthonormal square matrices[ If D is
of full rank then all the diagonal entries of Sd are greater than zero[ Else\ if D has say rank r\ only
the _rst r si|s are di}erent from zero\ the remaining ones being null[

Employing "3#\ eqn "0# can be rewritten as

vd � u0s0d	0¦u1s1d	1¦= = =¦ursrd	r "4#

where ui is the ith column of U and d½i is the ith component of d½ � VTd[ Recalling that dTd � 0 and
that the ui|s are orthonormal\ it is clear that the largest size of vd is s0[

Therefore\ we propose to use the largest singular value of the disturbance in~uence matrix as
the measure of the precision performance of the structure[ Assuming that two structures are
suggested for the same family of disturbances\ the one with the smaller measure is preferred[

The objective is to _nd\ by moving the nodes of the truss\ an optimal geometry with the least
value of J�[ The structural elements are assumed to be of constant cross!sections and a constant
volume constraint is imposed[ Formally the design problem is to _nd new coordinates of the nodes
x\ while keeping the volume constant\ such as to minimize J�[ Since we have shown that s0 is a
measure of J� the problem becomes

min
x

s0 subject to s
M

i�0

li � constant "5#

where li is the length of element i and M is the number of elements in the truss[ Please note\
depending on the design parameters\ x is either the coordinates of all the nodes of the truss or a
subset of these coordinates[ For example\ one could impose that the CDOF locations are con!
strained while the backup structure may assume any geometry[ When solving this mathematical
programming problem by a Lagrangian multipliers method the need arises for computing the
gradient of s0[ This is a central topic of this paper and it is addressed in the following two sections[

2[ Variations of repeated singular values

In this section we will discuss the sensitivities of singular values of a matrix\ and in particular
repeated singular values\ with respect to parameters which a}ect the matrix[ Derivatives of distinct
singular values are given by Junkins and Kim "0889#[ Let
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A � USVT "6#

be the singular decomposition of a matrix A\ then singular value m of A can be expressed as

sm � uT
mAvm "7#

where um and vm are columns m of U and V\ respectively[ The variation of the mth singular value
with respect to variations in parameters of A is\ neglecting higher order terms\

dsm � uT
m dAvm "8#

or\ if matrix A"p# is a di}erentiable function of a set of parameters pk

s
k

1sm

1pk

dpk � uT
m 0sk

1A
1pk

dpk1 vm "09#

and also

s
k

1sm

1pk

dpk � s
k 0uT

m

1A
1pk

vm1 dpk "00#

Since the dpk are arbitrary\ this equality implies that the derivative of a singular value with respect
to a parameter pk is

1sm

1pk

� uT
m

1A
1pk

vm "01#

It is also assumed that matrix A is real[ If A is complex the derivative is the real part of the r[h[s[
of "01#[ This relation is valid for a distinct singular value[

We intend to utilize these derivatives for reducing the singular value in order to optimize the
performance of the structure[ In the process of reducing a given singular value it often occurs that
smaller singular values increase which\ as pointed out by Masur "0873#\ may result in a crossover[
Consequently we have to consider the case of repeated singular values[ Repeated singular values
are r consecutive singular values having the same value\ where r is the multiplicity of the singular
value[ To obtain their derivative we modify a technique originally developed for repeated eig!
envalues of symmetric matrices[ Derivatives of repeated eigenvalues for self adjoint systems were
presented by Masur "0873\ 0874# and for symmetric matrices by Czyz and Lukasiewicz "0884#[

Let B be a symmetric matrix\ which depends on parameters p\ having an eigenvalue l9 of
multiplicity r[ Let M be an r×r matrix of components

mij � vT
i dBvj\ i\ j � 0\ [ [ [ \ r "02#

where dB is the change in B due to dp and vi is the eigenvector associated with the ith repeated
eigenvalue[ It can be shown that the r eigenvalues of M are the variations dli of eigenvalue l9[ The
r eigenvalues of B¦dB are now li � l9¦dli[

To extend these results to singular values we recall that singular values of a matrix A are the
square roots of the eigenvalues ATA "Golub and Van Loan\ 0878#[ Denoting B � ATA\ then
li � s1

i \ where li is an eigenvalue of B\ si is a singular value of A\ and the eigenvectors of B are the
right singular vectors of A\ denoted V in "6#[
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The relations between variations in B and A are

dB � dATA¦ATdA "03#

and the corresponding relation between variations of the eigenvalues and singular values is

dli � 1sidsi "04#

Substituting "03# in "02# and using "6# we have

mij � vT
i dAT"USVT#vj¦vT

i "VSTUT#dAvj "05#

From the orthonormality of V it follows that VTvj is a zero vector but for entry j which equals one[
Hence\ the above relation reduces to

mij � vT
i dATsjuj¦uT

i sidAvj "06#

The eigenvalues of M are now the changes in the squares of the singular values[ To _nd the
variation of the singular values we use "04# and de_ning s9 � si � sj we obtain

ds �
0

1s9

eig"M# � eig"M
 # "07#

where eig" [ [ [ # are the eigenvalues of the matrix within parenthesis[ Finally we obtain matrix M

of components

m¼ ij �
0
1
"uT

j dAvi¦uT
i dAvj# "08#

An eigenvalue of M
 \ dsi\ is the change in the ith repeated singular value of A due to a variation
dp[ The variations of the repeated singular values are an implicit function of the variations of p[
What we are missing is an explicit relation of the type in "8# which led to the derivative in "01#[

3[ Sensitivities of repeated singular values

To obtain explicit derivatives\ for the optimization algorithm\ a further assumption is made
based on the following considerations "Masur\ 0873#[ From a numerical point of view the repeated
singular values are not strictly equal but packed very closely[ In fact one can order them by size[
Each one of the singular values has its own derivative[ Consequently\ for an arbitrary step dp in
the parameter space some singular values of the multiplicity group may increase while others may
decrease[ Hence it is reasonable to assume that the order of the singular values will change[ This
is very detrimental to the e.ciency of the minimization[ Since cross!overs are likely to occur when
we try to reduce the largest singular value\ we will have to keep switching the objective function\
moving from one singular value to its neighbor[

A common cure to that predicament\ presented in Masur "0873#\ is to keep all the repeating
singular values clustered and to reduce them simultaneously[ Parameter variations dp will therefore
be con_ned to a subspace\ Dp¹\ which causes the eigenvalues of M
 to remain equal\ that is\ dsi � ds9

for i � 0\ [ [ [ \ r[ This can only occur if M
 is the diagonal matrix M
 � ds9I[ Parameter variations\
dp¹\ belonging to the subspace Dp¹ must\ therefore\ satisfy the conditions m¼ ij � 9 for i � j and
m¼ ij � ds9 for i � j[ Noting that
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dA � s
k

1A
1pk

dp¹k "19#

these conditions become with "08#

0
1

s
k 0uT

i

1A
1pk

vj¦uT
j

1A
1pk

vi1 dp¹k � 9\ i � j\ i\ j � 0\ [ [ [ \ r "10#

and

uT
i 0sk

1A
1pk

d¹pk1 vi � ds9\ i � 0\ [ [ [ \ r "11#

In subspace Dp¹ the variation of the singular value can now be expressed as

ds9 � s
k 0uT

0

1A
1pk

v01 dp¹k "12#

Please note\ since the singular value increments are the same for all the multiplicities\ the indices
of u and v are arbitrarily taken as one[ Following procedure "09#Ð"01# we _nd the common
derivative to all the multiple singular values

1s9

1p¹k

� uT
m

1A
1p¹k

vm "13#

These are the sensitivities we were looking for[ These sensitivities can be computed in a parameter
space satisfying "10# and "11#[

In practice the design moves in the entire variable space[ Following the optimization algorithm\
proposed in Czyz and Lukasiewicz "0884#\ a Lagrangian multipliers matrix is used to impose the
constraints "10#\ "11# and the constant volume constraint in "5#[ Since the multiplicity of the
singular values is not known in advance\ and can change during the optimization\ a criterion for
detecting the modality of the problem is required[ The criterion is based on g[ Prior to the
optimization the maximum expected modality of the problem\ m\ is determined[ Matrix g is then
calculated and if it is positive de_nite\ m is the modality of the problem\ else\ m is reduced by 0
and that procedure is continued until m � 0[ Once the multiplicity is found the step size and
direction are determined using the Lagrange multipliers matrix g[ The algorithm is repeated until
there is no further improvement\ that is\ until ds9 � 9[ Note\ to determine the positive de_niteness
of g\ Czyz and Lukasiewicz "0884# have checked whether the diagonal is positive[ This does not
seem to su.ce since a positive diagonal is a necessary\ but not a su.cient\ condition for positive
de_niteness of a matrix[

4[ Geometrical derivative of the disturbance in~uence matrix

In the previous sections we found the derivative of a single or multiple singular value given the
derivative of the matrix[ In this section we apply the method to computing the derivative of the
disturbance in~uence matrix with respect to the nodal coordinates of a truss[ Recall that every
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column of D is part of a displacement vector\ generated from unit disturbance[ Therefore\ the
derivative is in fact a structural response derivative[ In the case of truss structures this derivative
can be described explicitly[

In order to obtain the derivative of the displacements of a truss structure we start from the
structural _eld equations[ Consider a linear elastic truss composed of M members and N nodal
degrees of freedom[ The equations governing the response of the structure are "0# the elongationÐ
displacement equations or geometric relations\ "1# the constitutive relations or generalized Hooke|s
law and "2# the equilibrium equations

e � Ru "14#

t � Se "15#

f � Qt "16#

where e is the M!vector of geometric elongations of the elements\ R is the M×N kinematics matrix\
u is the N!vector of nodal displacements\ t is the M!vector of element forces\ S is the M×M
diagonal matrix of element sti}ness "Sjj � EjAj:Lj#\ Ej\ Aj\ Lj are\ respectively\ Young|s modulus\
the cross!sectional area and the length of bar j\ f is the N!vector of applied nodal loads\ and Q � RT

is the N×M statics matrix[
Using "14#Ð"16# and denoting K 0 QSR we have

Ku � f "17#

Equation "17# can now be solved to _nd the displacements[
The general displacement derivative with respect to a parameter p\ assuming di}erentiability of

all the appropriate matrices\ is "Adelman and Haftka\ 0875#\

K
1u
1p

�
1f
1p

−
1K
1p

u "18#

After determining the {pseudo!loads| in the r[h[s[ of "18# the sensitivities of the displacements are
obtained by solving "18#[ In many applications\ as it is here\ the applied forces are constant and
therefore 1f:1p is zero[ There are\ however\ cases for which this derivative should be evaluated\ for
example\ if the disturbance forces act along the truss members such as induced thermal stresses[
With regard to the sensitivity of the sti}ness matrix

1K
1p

�
1

1p
"QSR# "29#

we notice that the matrices whose derivatives must be established are S\ and Q "or R � QT#[ Since
we restrict ourselves to geometrical optimization the design parameters are node coordinates
denoted x[ The derivatives of Q and S may be obtained using statistical analysis for large dis!
placements\ e[g[ Levy and Spillers "0884#\ which is also concerned with the change in the sti}ness
matrix due to nodal coordinate changes[ In the following we will give the explicit derivatives for
1!D truss structures[
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Fig[ 1[ Typical 1!D bar[

In Fig[ 1 we have sketched a typical planar truss element of length Lm making a slope am with
the horizontal axis[ This element corresponds to qm "column m of Q# and to the diagonal component
sm of S[ We are seeking the sensitivities of Q and S relative to an arbitrary coordinate xi[ In fact
we need 1sm:1xi and 1qm:1xi[ A variation dxi causes changes dLm of the length and dam of the slope
of all elements connected to that coordinate[ Now\ sm is an explicit function of Lm and likewise qm

is an explicit function of am only[ This suggests the use of the following chain derivation

1sm

1xi

�
1sm

1Lm

1Lm

1xi

"20#

1qm

1xi

�
dqm

dam

1am

1xi

"21#

We have sm �"EA#m:Lm and consequently

1sm

1Lm

� −
sm

Lm

"22#

We now focus on 1Lm:1xi[ Let x and l be\ respectively\ the N!vector of nodal coordinates and the
M!vector of elemental lengths[ We modify all the coordinates by a small amount dx[ The element
lengths vary accordingly by dl[ It is rather obvious that the relationship between dx and dl
"in_nitesimals# is conforming to the relationship between u and e "small displacements#[ Once one
accepts the truth of this rule\ "14# applies equally to small modi_cations of the positions of the
joints and ensuing element length changes
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dl � QT dx "23#

In other words

1Lm

1xi

� Qim "24#

With regard to dqm:dam\ vector qm is a zero vector except for the entries corresponding to the
degrees of freedom connecting the element[ Without loss of generality we will assume that they
are numbered from 0Ð3 as in Fig[ 1[ Vector qm is

qT
m � "cos am sin am −cos am −sin am 9 9 [ [ [ # "25#

and its derivative with respect to am\ denoted q?
m becomes

1qT
m

dam

0 q?Tm � "−sin am cos am sin am −cos am 9 9 [ [ [ # "26#

Finally\ one can show that 1am:1x � q?
m:Lm or

1am

1xi

�
q?im
Lm

"27#

Introducing "22#\ "26#\ "24# and "27# in "20# and "21# gives the sensitivities

1sm

1xi

� −sm

qim

Lm

"28#

1qm

1xi

� q?m
q?im
Lm

"39#

Here\ qim and q?
im are the ith components of the corresponding vectors[ In the 2!D case the sensitivity

of Q leads to similar expressions[ See for instance Levy and Spillers "0884#[

5[ Numerical examples

The geometry optimization procedures described above were implemented with Matlab[ A series
of structures\ of which we will report two examples\ were successfully tested[ Both examples treat
the design of a same structure subjected to a family of disturbances[ They di}er in their set of
design variables[ Interestingly in the _rst example the _rst singular value of the disturbance matrix
was unique whereas in the second example we had a repeated singular value[

The bridge truss in Fig[ 0 has 11 nodes and 40 elements[ There are 39 DOF\ nine of them CDOF[
These are the lateral displacements of the lower chord and are designated by arrows in the _gure[
The disturbances are external lateral forces acting at the CDOF subject to constraint "2#[ A column
i of the disturbance in~uence matrix is the vector of the lateral displacements of the lower chord
for a single disturbance load at CDOF i[ In this case the design aims to reduce the de~ection of the
bridge for a general combination of lateral loads acting on the bridge[ These include for instance
a load of magnitude one traveling along the bridge\ or three loads of magnitude 0:z2 acting
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Fig[ 2[ Optimal geometry of bridge truss without actuators ^ _xed CDOF[

simultaneously at any one of the DOF or also uniformly distributed loads of magnitude 0:2 applied
at all the 8 DOF[ The only condition on the external loads is "2#[ The design variables are the
longitudinal and lateral coordinates x of the free nodes and some coordinates of the CDOF[ Here
two cases are considered ] "a# the coordinates of the CDOF are _xed ^ and "b# the longitudinal
coordinates of the CDOF are _xed but the lateral components are part of the design variables[
Interestingly a case "c# where the CDOF nodes were free to move in any direction was also checked[
This resulted in a trivial solution[ The CDOF were lumped at the two supports\ resulting indeed
in zero de~ections at the CDOF;

Considering case "a#\ the optimized geometry is depicted in Fig[ 2[ In this case we seek the sti}est
geometry having the same mass and connectivity relations as the original structure which will have
the least RMS of the CDOF displacements[ The optimal geometry is\ in accordance with engin!
eering practice\ wide in the middle and tapering o} towards the supports\ resulting in a reduction
of about 39) in the _rst singular value[ Thus\ for a same amount of material the optimized
con_guration will be 0[55 sti}er\ in the worst distortion case\ than the initial design[ To have an
idea of the optimizer behavior we refer to Fig[ 3[ This is a graph of the non!dimensional value of
s0\ that is\ the value of s0 during the optimization divided by its initial value\ against a non!
dimensional measure of the optimization progress[

We should like to draw attention to this measure since it is rather unusual in structural design\
where the abscissa is traditionally the number of iterations[ This measure is the cumulative sum of

Fig[ 3[ Bridge truss without control ^ optimization of _rst singular value[
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Fig[ 4[ Optimal geometry of bridge truss without actuators ^ free CDOF[

the absolute value of the changes in length of the elements\ in each step\ divided by the total
length of the rods[ Although the total length "mass# of the structure does not change during the
optimization\ each element may change in length and therefore the sum of the absolute values is
di}erent from zero[ This parameter actually tracks the {~ow| of mass in the structure during the
optimization[

Returning to Fig[ 3 we notice a motonically decreasing curve with large negative derivatives at
the beginning and approaching zero slope when closing in on the optimal geometry[ In this case
the _rst singular value was and remained distinct[

In case "b# of the same bridge the CDOF nodes were allowed to change their location in the
lateral direction[ The optimized geometry is shown in Fig[ 4[ Here we notice a radical conceptual
change of the design[ Evidently\ the optimization algorithm utilized the possibility of modifying
the vertical locations of the CDOF nodes and produced a structure which is very di}erent from
the original design[ The original truss was a beam type while the optimized geometry is a three!
hinged structure[ The reduction of the _rst singular value is also drastic\ about 74)[ The progress
of the optimization is shown in Fig[ 5 and this time there are repeated singular values[ At the start of

Fig[ 5[ Optimization of _rst singular value using {repeated singular value| algorithm[
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Fig[ 6[ Optimization of _rst singular value without using {repeated singular value| algorithm[

the process the _rst three singular values of the disturbance matrix are distinct[ As the optimization
proceeds we note that the second singular value climbs towards the declining _rst singular value[
When they are getting closer the algorithm detects the multiplicity\ merges the two singular values
and reduces their size simultaneously[ The third singular value lingers at the bottom of the graph
evidently una}ected by the drastic design changes[ Trying to minimize the _rst singular value
without the repeated singular values algorithm resulted in crossovers\ as shown in Fig[ 6\ with a
_nal result well above the optimum[ Note\ the reconstruction of curves s0 and s1 involved some
guess work[ It was not always clear to which curve "s0 or s1# the maximum value belonged[

6[ Conclusions

This paper has presented a method for computing the sensitivities of a repeated singular value
of a matrix with respect to parameters a}ecting the matrix[ The derivative for the case of a single
singular value can be found in the literature[ The derivative for repeated singular values is developed
in this paper[ The technique is an outgrowth of a similar approach for computing the sensitivities
of an eigenvalue of a square matrix[ It is shown that the derivatives can be obtained under the
condition that the parameter change is in a direction which maintains the order of multiplicity of
the singular value[

The method was tested for the design of the geometry of a precision truss subjected to a family
of disturbances[ In order to maintain the nodal displacements as undeformed as possible one has
to minimize the _rst singular value of the disturbance matrix[ This guarantees a minimal value for
the worst case distortion under the given family of disturbances[ The mathematical programming
formulation called for minimizing the _rst singular value subject to the conditions for maintaining
the multiplicity of the singular value in conjunction with a constant volume constraint[ This was
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solved via a Lagrangian multipliers method[ The implementation algorithm constantly checked
the degree of multiplicity of the singular value and updated that value when necessary[

Two examples were presented ] a case with a single singular value and a case where the initially
distinct _rst singular value merges with the climbing second singular value[ In the latter example
the algorithm detects the incumbent duplicity in due time and one notes the simultaneous reduction
of both quantities[ An example of the di.culties which arise when not using the repeated singular
values algorithm was also given[ In this case the crossovers were evident and so was the inability
of the algorithm to reach the optimal solution[

Signi_cant reductions of the singular values were achieved\ indicating that optimal geometries
can indeed enhance the performance of controlled structures[
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